

Power Wheel[®] Application Guide

CONTENTS

Gear & Bearing Rating Definitions 3				
Product Summary	4			
Product Summary	5			
Other Power Wheel Options	6			
Power Flow Single Reduction Wheel Drive Double Reduction Wheel Drive Single Reduction Shaft/Spindle Output Drive Double Reduction Shaft/Spindle Output Drive 7				
Application Data 8				
Tables and Glossary 9				
Worksheet 10				
Lubrication and Warranty Specs				

AuburnGear Power Wheel Final Drives

INTRODUCTION

Auburn Gear is your reliable source for a variety of power transfer products. This application guide highlights the **Power Wheel**[®] Planetary Gear Drive product offering.

We also offer planetary gear kits and limited-slip differentials. We offer you services for design, engineering, prototype support and full testing and production capabilities. Product applications include aerial lift, agricultural, automotive, construction, forestry, industrial and marine. Auburn Gear offers you quality and reliability backed by more than 50 years of experience.

Greater Design Flexibility

Power Wheel® planetary drives allow greater flexibility than conventional power train systems and often eliminate the need for components such as drive shafts, axles and chain drives. The many models and styles offered meet a wide range of mobile and industrial application requirements. Single and double reduction ratios can be furnished. In addition, they can be supplied with a variety of motor mounts and inputs which allow them to be used with most makes of hydraulic motors.

High Efficiency and Compact Design

Providing 96 to 98% power transfer efficiency, Power Wheel[®] planetary drives are significantly more efficient than many other types of drives, including differential design planetaries. The rugged, compact design of these drives saves space and provides for long service life.

All models can be furnished with parking brakes. Auburn Gear has designed integral A2 Series parking brakes in Models 5, 6, 6B, 7, 8, 8B and 9. These units provide a very compact planetary drive/parking brake package which is particularly useful in applications where space is limited.

Responsive Performance

Power Wheel[®] drives deliver the power you require for smooth operation and precise control. These units are also fully reversible. Reverse power is easily obtained by reversing rotation of the input. For vehicle applications, the positive traction provided by individually powered wheels results in superior maneuverability and improved ground clearance over conventional drive systems.

Auburn Gear Power Wheel drives can be an efficient solution for any application where you need to increase torque or reduce speed to achieve usable power. Let Power Wheel[®] planetary drives help you put power in its place.

GEAR AND BEARING RATING DEFINITIONS

INTERMITTENT OUTPUT TORQUE RATING - A conservative value at which the Power Wheel[®] would be expected to ultimately fail should it be operated at this level continuously.

CONTINUOUS OUTPUT TORQUE RATING - A torque value between 33% and 50% of the maximum intermittent value can usually be considered safe and should yield acceptable life.

SPEED RATING

Auburn Gear Power Wheel maximum input speed ratings are defined as follows, regardless of model:

UNIT	RPM
A2 Series Integral Brake Unit	2,000*
Single Reduction Unit without brake	3,500
Double Reduction Unit without brake	5,000

* For speeds between 2,000 and 3,600 RPM contact Auburn Gear for duty cycle analysis.

The speed rating has been defined based upon the thermal capacity of the gear box. If your application requires parameters greater than the above defined limits, please contact Auburn Gear with your duty cycle details.

BEARING RATING

Auburn Gear Power Wheel radial bearing load capacity is based on a B10 life of 3,000 hours at an output speed of 100RPM. For example, a Model 8 Series B Wheel Drive SAE B configuration 8W2B, the bearing life is limited by the output speed as well as the load center.

LOAD CENTER (in)	MAX. RADIAL LOAD (lbf)
3	18,800
2	18,800
1	18,000
0	13,000
-1	11,000
-2	8,500
-3	7,500

In addition, if the anticipated load and output speed are known, one can theoretically develop the bearing life based on the chart below, i.e. anticipated load 15,000 lbs at 2" load center, output speed = 200 RPM.

BEARING LOAD, LIFE AND SPEED RELATIONSHIPS			
$LF = \frac{SF \times R}{R'}$ $R = Allowable resultant load for given location from mounting flange$ $R' = Anticipated load at location from mounting flange$ $LF = Life Factor from table (see below)$ $SF = Speed Factor from table (see below)$			
OUTPUT SPEED (RPM)	SF	LF	BEARING HOURS B-10 LIFE
5	2.456	.584	500
10	1.994	.719	1000
20	1.620	.812	1500
30 40 50	1.435 1.316 1.231	.886 .947 1.000	2000 2500 3000 ➡ 3051
60	1.165	1.047	3500
70	1.113	1.090	4000
80	1.069	1.130	4500
90	1.032	1.166	5000
100	1.000	1.231	6000
200	.812	1.289	7000
300	.719	1.342	8000
400	.659	1.390	9000
500	.617	1.435	10000

CAUTION: The same torsional loading constraints used in the driving mode must be used in the braking mode when braking through the **Power Wheel** drive gear set.

Life Factor = (.812x18,800)/15,000=1.017, therefore one could expect 3,051 hours of theoretical bearing life based on the paramaeters given.

Power Wheel® PRODUCT SUMMARY

Maximum

A2 Series

Bolt-on

SHAFT DRIVES

			Intermittent	Nominal	Integral	Parking
WHEEL DRIVES	Model	Reduction	Torque* (Ib-in)	Rande	Brake Option	Option
	6W	Single	22 000	3 – 5 1	v	
	6WB1	Single	22,000	3 – 5 1	~	
	6W	Double	50,000	13 – 33 1	~	
	6WB ¹	Double	50,000	13 – 33.1	~	
	6W2	Double	50,000	13 – 33 1	~	
· · ·	7W	Double	70,000	13 - 33.1	~	
W SERDA	8W	Double	100,000	14 - 49.1	~	
	8W2	Double	100,000	14 – 49.1	~	
	9W	Double	130,000	14 – 49:1	~	
10 2	10W	Double	180,000	16 - 51.1	·	~
-	1	Brgless Motor (Char	-Lynn [®] 2000 or DanfossON	1SS)		•
	5T	Single	22,000	3 – 6:1	v	
	6F	Single	30,000	3 – 6:1	~	
SHAFT DRIVES	6HCF	Single	30,000	5:1		
	6HFF	Single	30,000	5:1		
	6R	Single	30,000	3 – 6:1	✓	
	6T	Single	30,000	3 – 6:1	✓	
6 . 0.	6S	Double	50,000	14 – 34:1	✓	
0	6S2	Double	50,000	14 – 34:1	✓	
• •	7S	Double	70,000	14 – 34:1	✓	
	8HCF	Single	60,000	4 – 6:1		
	8HFF	Single	60,000	4 – 6:1		
. 00	8T	Single	60,000	3 – 7:1	~	
	8HCF	Double	100,000	23 – 32:1		
	8HFF	Double	100,000	23 – 32:1		
	8S	Double	100,000	15 – 50:1	✓	
	8S2	Double	100,000	15 – 50:1	✓	
	9S	Double	130,000	15 – 50:1	~	
	10S	Double	180,000	17 – 52:1		~
SPINDLE DRIVES	5TF	Single	22,000	3 – 6:1	v	
9	6FF	Single	30,000	3 – 6:1	\checkmark	
	6HCF	Single	30,000	5:1		
	6TF	Single	30,000	3 – 6:1	\checkmark	
	6SF	Double	50,000	14 – 34:1	\checkmark	
	6S2F	Double	50,000	14 – 34:1	<i>✓</i>	
	7SF	Double	70,000	14 – 34:1	~	
	8TF	Single	60,000	3 – 7:1	\checkmark	
	8SF	Double	100,000	15 – 50:1	\checkmark	
	8S2F	Double	100,000	15 – 50:1	v	
	9SF	Double	130,000	15 – 50:1	~	
	10SF	Double	180,000	17 – 52:1		~

* Depending on the duty cycle and the nature of the application, a normal continuous output torque of 1/2 to 1/2 of the maximum intermittent should yield satisfactory Power Wheel life. Customer testing and application approval is strongly recommended. Torque Ratings are shown in Ib-in; to convert to Nm, multiply by .113.

Power Wheel® PRODUCT SUMMARY

SWING DRIVES

Model	Reduction	Maximum Intermittent Output Torque* (Ib-in)	Nominal Ratio Range	A2 Series Integral Parking Brake Option	Bolt-on Parking Brake Option
6SW	Single	30,000	3 – 6:1	v	
6SW	Double	50,000	14 – 34:1	v	
7SW	Double	70,000	13 – 34:1	✓	
8SW	Double	100,000	15 – 50:1	✓	
9SW	Double	130,000	15 – 50:1	v	
10SW	Double	180,000	17 – 52:1		v

KITS

Model	Reduction	Maximum Intermittent Output Torque* (Ib-in)	Nominal Ratio Range	A2 Series Integral Parking Brake Option	Bolt-on Parking Brake Option
5	Single	22,000	3 – 6:1	v	
6	Single	30,000	3 – 6:1	~	
6	Double	50,000	13 – 34:1	~	
7	Double	70,000	13 – 34:1	~	
8	Single	60,000	3 – 7:1	~	
8	Double	100,000	14 – 50:1	~	
9	Double	130,000	14 – 50:1	~	
10	Double	180,000	16 – 52:1		V

NON-POWERED UNITS

Model	Maximum Radial Load (lb)	Maximum Radial Load (kg)
6N	10,000	4,500
8N	16,000	7,700
82N	18,800	8,500
10N	30,000	13,600

* Depending on the duty cycle and the nature of the application, a normal continuous output torque of ½ to ½ of the maximum intermittent should yield satisfactory Power Wheel life. Customer testing and application approval is strongly recommended. Torque Ratings are shown in lb-in; to convert to Nm, multiply by .113.

OTHER Power Wheel® OPTIONS

Weldable Hub

The hubs are 4140H steel and can be turned down and/or welded for mounting sprockets, pulleys, or other devices. A circular keeper plate secures the hub to the splined output shaft with two bolts (keeper plate and bolts included).

6420105 6420106 6420107 <u>SPLINE</u> 23T-^{12/24} 23T-^{8/}16 20T-^{8/}16 FITS MODELS 5, 6, & 8 6B, 7, 8, 8B, 9, & 10 8, 8B, & 9

Boot Seal

An optional seal that protects the main oil seal from dirt and other debris. The boot seal will give extended life on applications operating in extremely muddy or dirty conditions. Boot seals are available on a selective model basis.

Guard and Boot Seal System

A boot seal and metal guard are available in the Model 6, 9 and 10 spindle output units only. These can be ordered separately or together. They function best together. The guard and boot seal system are utilized in extremely high grit applications. The guard protects the boot seal from contaminants which will ultimately wear the boot seal lip.

Quick Disconnect

This optional disconnect is available on all wheel drives. No tools are needed to disengage or re-engage the drive. The planetary drive is disengaged with the push of a button. The quick disconnect eliminates removal of the disconnect cover and external contaminates are sealed from the units by internal o-rings and a gasket that is sandwiched between the disconnect and planetary cover. The rugged, compact design ensures dependable service.

PUSH IN CENTER PLUNGER

POWER FLOW

Wheel Drive, Single Reduction

- 1. Coupling (1) rotates in the direction of motor shaft rotation(cw)
- 2. Input shaft (2) splined to coupling (cw)
- 3. Sun gear (3) splined to input shaft (cw)
- 4. Planet gears (4) rotate opposite sun gear (ccw)
- 5. Planet gears (4) drive ring gear (5) in same direction (ccw)
- 6. Ring gear (5) is attached to the hub (6), hub rotates (ccw) 7. Hub (6) is attached to wheel/rim, wheel rotates (ccw)

Wheel Drive, Double Reduction

- 1. Coupling (1) rotates in the direction of motor shaft rotation (ccw)
- 2. Input shaft (2) splined to coupling (ccw)
- 3. Primary sun gear (3) splined to input shaft (ccw)
- 4. Planet gears (4) rotate opposite sun gear (cw)
- 5. Primary carrier (5) rotates opposite planet gears (ccw)
- 6. Secondary sun gear (6) attached to primary carrier (5) (ccw)
- 7. Secondary planet gears (7) rotate opposite sec. sun gear (6) (cw)
- 8. Ring gear (8) rotates same direction as sec. planet gears (7) (cw)
- 9. Hence driving the hub (9) (cw)
- 10. Hub (9) attached to wheel/rim (cw)

Shaft/Spindle Output, Single Reduction

- 1. Sun gear (1) rotates in the direction of motor shaft rotation (cw)
- 2. Planet gears (2) rotate opposite sun gear (1) (ccw)
- 3. Carrier (3) is driven in the same direction as the sun gear (1) (cw)
- 4. Spindle or shaft (4) is splined to carrier (3), therefore it rotates (cw)

Shaft/Spindle Output, Double Reduction

- 1. Primary sun gear (1) rotates in the direction of motor shaft rotation (ccw)
- 2. Primary planet gears (2) rotate (cw)
- 3. Primary carrier (3) driven (ccw)
- 4. Secondary sun gear (4) attached to primary carrier (3) (ccw)
- 5. Secondary planets (5) rotate opposite secondary sun gear (4) (cw)
- 6. Secondary carrier (6) driven (ccw)
- 7. Output spindle or shaft (7) splined to secondary carrier assembly (6) (ccw)

In summary:

• Wheel drives, the direction of input rotation is opposite of output rotation

Shaft/spindle output and swing drives, the direction of input rotation is the same as the output

Power Wheel® APPLICATION DATA

A typical application adapts the Power Wheel to a hydrostatically-driven vehicle; however, the basic formulas apply to other uses as well. The following formulas calculate gradeability torque only.

For mobile equipment, identify parameters for the vehicle and its desired performance. They are listed in Table 1.

Determine the road rolling resistance (rr) in pounds per 1,000 lbs. (kg. per 1,000 kg) of gross vehicle weight and the percent grade equivalent (RR%) from Table 2. Calculate the road rolling resistance (RR) in pounds (kg):

$$RR = \frac{GVW \times rr}{1000}$$

$$RR (kg) = \frac{GVW (kg) \times rr (kg)}{1000}$$

Calculate the Power Wheel input speed necessary to obtain the desired maximum vehicle ground speed:

(2)
$$Ni = \frac{\frac{168 \times V \times Ra}{r}}{Ni = \frac{2652 \times V (km/hr) \times Ra}{r (mm)}}$$

This value should not exceed the speed parameters specified on page 3. The Power Wheel ratio (Ra) may be used to adjust the input speed to the desired level while maintaining the required ground speed.

The output torque required for gradeability (G) and wheel slip can now be calculated:

$$(3) \quad Tog = \frac{GVW \times r \times (G + RR\%)}{100}$$
$$Tog (Nm) = \frac{GVW (kg) \times r (mm) \times (G + RR\%)}{10,194}$$
$$\sqrt{ \quad Tos = VW \times m \times r}$$
$$VW (kg) \times m \times r (mm)$$

$$\frac{102}{102}$$
Select the correct Power Wheel from the general specifications contained in Table 4. Consider the

specifications contained in Table 4. Consider the maximum output torque to be a conservative ultimate value at which the Power Wheel would be expected to fail should it be operated at this level continuously. Intermittent torque peaks of short duration at this level should not damage the Power Wheel. A torque value of between 33% and 50% of the maximum intermittent value can usually be considered safe for continuous operation.

The net force available to drive the vehicle, termed the "drawbar pull," is the difference between the tractive effort (Tos / r) produced by the Power Wheel output torque and the road pulling resistance:

(5)
$$DPos = \frac{Tos}{r} - RR$$
$$DPos (kg) = \frac{1000 \times Tos (kgm)}{r (mm)} - RR (kg)$$

After selecting the appropriate Power Wheel, verify that the unit will provide satisfactory bearing life and still support the anticipated radial load. Refer to the appropriate bearing load curve, and read the allowable radial load (R) at the appropriate distance of the load centerline from the wheel mounting face. This value, the anticipated load at the location from the mounting flange (R') and the bearing speed factor (SF, determined from the chart adjacent to the bearing load curve), can be used to determine the life factor (LF) and the hours of B-10 bearing life expected (read the B-10 hours from the chart adjacent to the bearing load curve). The bearing capacity of each Power Wheel is matched to that unit's torque capacity so the same Power Wheel will provide both adequate torgue and bearing life for a specific range of vehicle sizes and weights.

The above information is provided as a guide in applying the Power Wheel. The application data worksheet in this brochure may be used to supply information to Auburn Gear for specific application recommendations.

A typical Power Wheel application:

Self propelled windrower

Two front wheels driving

Weight distribution 60% front, 40% rear Gross vehicle weight, 6,000 lbs. (2,721 kg)

Weight on driving tires, 3,600 lbs. (1,633 kg)

Rolling radius of driving tires, 16" (406.4 mm)

Maximum percent gradeability desired, 25%

Maximum vehicle ground speed desired, 10 mph

- (16.21 km/hr)
- Coefficient of friction 0.6 Operation on smooth dirt

From Table 2:

rr = 25 lbs. (kg) per 1,000 lb. (kg) gross vehicle weight; RR% = 2.5%

Calculate the road rolling resistance (RR) from equation:

$$RR = \frac{(6,000) (25)}{1000} = 150 \text{ lbs.}$$
$$RR = \frac{(2721) (25)}{1000} = 68.03 \text{ kg}$$

Calculate the Power Wheel input speed necessary to obtain the desired maximum vehicle ground speed:

Ni =
$$\frac{(168) (10) (24.5)}{16}$$
 = 2572.5 rpm
Ni = $\frac{(2652) (16.09) (24.5)}{406.4}$ = 2572.5 rpm

From equation ③, calculate the Power Wheel ouput torque required to obtain the desired gradeability:

*Tog =
$$\frac{(6,000) (16) (25 + 2.5)}{100}$$
 = 26,400 lb. in.
(13,200 lb.in./wheel)
*Tog = $\frac{(2,721) (406.4) (25 + 2.5)}{10,194}$ = 2,983 Nm
(1.491.5 Nm/wheel)

Calculate the Power Wheel output torque required to obtain wheel slip from equation $\boldsymbol{\sqrt{}}$:

*Tos = (3,600) (0.6) (16) = 34.560 lb. in.
(17,280 lb.in./wheel)
*Tos =
$$\frac{(1,633) (0.6) (406.4)}{102}$$
 = 3,904 Nm
(1.952 Nm/wheel)

From the calculations the Model 6 Power Wheel would be most suitable for this application in terms of torque capacity, and the maximum input speed of 2572.5 rpm is well within the speed limitation of the Power Wheel.

Determine the drawbar pull from equation (5):

$$DPos = \frac{34,560}{16} - 150 = 2010 \text{ lbs.}$$
$$DPos = \frac{(1,000) (398.1)}{406.4} - 68.03 = 911.5 \text{ kg.}$$

The gross force available to drive the vehicle, termed the tractive effort, is 2160 lbs. (34,560/16) or 979.6 kg (398,100/406.4)

Now that the Model 6 ratio 24.5:1 has been determined as the most suitable unit, determine the B-10 bearing life to confirm the application. Assuming the centerline of 1800 lbs. (816.3 kg) load (R') is located .5" (12.7 mm) away from the spindle mounting flange, the allowable resultant radial load for 3000 hours B-10 at 100 rpm (R) is 5000 lbs. (2267 kg). For an output speed of 105 rpm (Ni = 2572.5/24.5), the speed factor (SF) is approximately 1.00. Now the life factor (LF) can be calculated:

$$LF = \frac{5000}{1800} \times 1.00 = 2.78$$
$$LF = \frac{2267}{816.3} \times 1.00 = 2.78$$

which will give a B-10 life in excess of 10,000 hours and confirms that the Model 6 is the most appropriate Power Wheel for this application.

* These values are vehicle torque requirements. To obtain required torque per Power Wheel, divide by the number of wheels driving the vehicle.

TABLES AND GLOSSARY

TABLE 1 KNOWN VALUES FROM VEHICLE AND PERFORMANCE PARAMETERS

GVW Gross vehicle weight (lbs.) (kg)

VW Weight on driving tires (lbs.) (kg)

- r Rolling radius (static, loaded) of driving tires (in.) (mm)
- G Percent gradeability (maximum desired)
- V Vehicle speed (maximum desired, mph) (km/hr)
- m Coefficient of friction

TABLE 3 VALUES TO BE CALCULATED

RR	Road Rolling Resistance (lbs.)(kg.)
Ni	Input speed to Power Wheel (rpm)
Tog	Power Wheel output torque required to obtain desired gradeability (Ib. in.) (Nm)
Tos	Power Wheel output torque required to obtain wheel slip (Ib. in.) (Nm)
DPos	Drawbar pull available at wheel slip (lbs) (kg)

TABLE 2 ROAD ROLLING RESISTANCE (rr) AND % GRADE EQUIVALENTS (RR%)

		I	RR%	
		Pounds	(kg) per	Equivalent
	SURFACE	1,000 lb.	(kg) GvW	% Grade
1.	Concrete, Excellent	10	(10)	1
2.	Concrete, Good	15	(15)	1.5
3.	Concrete, Poor	20	(20)	2
4.	Asphalt, Good	12	(12)	1.2
5.	Asphalt, Fair	17	(17)	1.7
6.	Asphalt, Poor	22	(22)	2.2
7.	Macadam, Good	15	(15)	1.5
8.	Macadam, Fair	22	(22)	2.2
9.	Macadam, Poor	37	(37)	3.7
10.	Cobbles, Ordinary	55	(55)	5.5
11.	Cobbles. Poor	85	(85)	8.5
12.	Snow, Two Inch	25	(25)	2.5
13.	Snow, FourInch	37	(37)	3.7
14.	Dirt, Smooth	25	(25)	2.5
15.	Dirt, Sandy	37	(37)	3.7
16.	Mud	37–150	(37–150)	3.7–15.0
17.	Sand, Level & Soft	60–150	(60–150)	6.0–15 0
18.	Sand, Dune	160–300	(160–300)	16.0–30.0

TABLE 4POWER WHEEL GENERALSPECIFICATIONS

Ra Ratio	b: See catalog pages for ratios available.
Nimax:	Maximum input speed to Power Wheel: All Double Reduction Models - 5000 RPM All Single Reduction Models - 3500 RPM All Integral A2 Series Brake Models - 2000 RPM
TM*	Maximum intermittent output torque ratings: Reference pages 4 and 5
*Depen applica ¹ ⁄2 of th Power	ding on the duty cycle and the nature of the tion a normal continuous output torque of ½ to e maximum intermittent should yield satisfactory Wheel life. Customer testing and application

approval is strongly recommended.

WORKSHEET

	CUSTOMER DATE										
RAI	APPLICATION										
H	MODEL OR TYPE										
8	DESIGN LIFE REQUIRED (L10)										
	GVW NO. OF DRIVING WHEELS										
	% OF WEIGHT OVER DRIVE WHE	FRONT RE/			REAR						
	% GRADEABILITY REQUIRED			MAXIMUM			AVERAGE				
×	SPEED REQUIREMENTS	MAXIMUM _			_ WORKING		GRADE				
DAT	TIRE SIZE			FRONT			REAR				
E E	ROLLING RADIUS			FRONT			REAR				
DRI	RIM OFFSET			FRONT			REAR				
Ш	ROAD CONDITIONS										
H	DUTY CYCLE INFORMATION:										
>	COND #1	. % @	D	%	GRADE	@	MPH	@	Radial Load (lb)		
	COND #2	. %	D	%	GRADE	@	MPH	@	Radial Load (lb)		
	COND #3	. % @	D	%	GRADE	@	MPH	@	Radial Load (lb)		
	COND #4	. % @	D	%	GRADE	@	MPH	@	Radial Load (lb)		
ATA	MAXIMUM TORQUE REQUIRED				CONT	NUOUS _					
	MAX. SPEED REQUIRED				CONT	NUOUS _					
RIVI	MAX. OVERHUNG LOAD										
D D	DISTANCE MTG. FLANGE TO OVERHUNG LOAD										
Ň	SPROCKET OR PINION DATA:										
S SV	PITCH DIA										
0	PRESSURE ANGLE NO. OF TEETH										
DL	DUTY CYCLE INFORMATION:										
NI	COND #1	%	@	L	.B. IN.	@	RPM	@	Average Load (lb)		
Ξ, S	COND #2	%	@	L	.B. IN.	@	RPM	@	Average Load (lb)		
4AF	COND #3	%	@	L	.B. IN.	@	RPM	@	Average Load (lb)		
ŝ	COND #4	%	@	L	.B. IN.	@	RPM	@	Average Load (lb)		
8	HYDRAULIC MOTOR MODEL NO.										
Ĕ	TYPE OF OUTPUT SHAFT (13T – ¹⁶ / ₃₂ , etc.)										
RA	SAE MOUNTING DESIGNATION (A, B, etc	.)	2-BOLT		4-BOLT					
Ę	DISPLACEMENT (CU.IN./REV.)			(ELIEF SETTINGS (PSI)							
-	TORQUE		LB.	IN. @			_ PSI MAXIMUM				
						001105					
T	BRAKE RELEASE TYPE: CHARGI										
DA	BRAKE MODEL NO MFR. (If not Auburn Gear)										
KE	OTHER (NAME) PRESSURE RANGE (PSI)										
BR/	MINIMUM PRESSURE TO BRAKE WHEN BRAKE IS APPLIED (PSI)										
	BRAKE TORQUE										
	22										
CIA	0										
E C											
° C	5 <mark>8</mark>										

LUBRICATION DATA

Power Wheel Planetary Drives are shipped without lubricant and must be filled to the proper level prior to start-up.

1. Type

In normal applications use an extreme pressure lubricant API-GL-5 approved. AGI recommends SAE 80W, 90, 80W-90 and 85W-90 grades of lube under normal climate and operating conditions. See chart below. For severe or abnormal applications with special requirements consult either Auburn Gear or a lubricant manufacturer for further assistance.

2. Change Interval

Initial Iubrication change after 50 hours of operation. Subsequent changes every 1000 hours or yearly whichever comes first.

3. Lube Temperature

Continuous operating temperatures of 160°F are allowable. Maximum intermittent temperature recommended is 200°F.

4. Amount of Lube

The unit should be half full when mounted horizontal. Lube levels for other mounts will vary. Consult Auburn Gear for details.

Shaft or Spindle Up Mounting If mounting unit vertically with shaft or spindle up, special provisions apply to ensure adequate lubrication of output bearings. Consult Auburn Gear.

Auburn Gear Power Wheel Low Temperature Gear Lube Requirement					
SAE	Auburn Gear				
Vice esity Crede	Decemmended Minimum Temperature				

Viscosity Grade	Recommended Minimum Temperature
75W-90	-40°F (-40°C)*
80W, 80W-90	-15°F (-26°C)*
85W, 85W-90	10°F (-12°C)*
90	35°F (2°C)

* Maximum temperature for Brookfield Viscosity¹ of 150,000 centipoise (cP)² per SAE J306 MAR85

¹ Brookfield Viscosity - apparent viscosity as determined under ASTM D 2983

² 150,000 cP determined to provide sufficient low temperature lube properties for Auburn Gear Power Wheels

All Power Wheels® are compatible with synthetic lubricants, as long as they meet the above specified parameters.

WARRANTY INFORMATION

Power Wheel® Warranty

Seller warrants to Purchaser that its Power Wheel® planetary gear products are free from defects in material and workmanship under normal use and service for a period of one year from the date the product is shown to have been placed into operation by original user or for two years from date of shipment from seller's plant, whichever shall first occur.

Seller's obligation under this warranty is expressly limited to the repair or replacement at its option, of the Power Wheel which is returned with a written claim of defect f.o.b. seller's factory, Auburn, Indiana, U.S.A., and which is determined by Seller to be defective in fact. THIS IS THE SOLE AND ONLY WARRANTY OF SELLER AND NO OTHER WARRANTY IS APPLICABLE, EITHER EXPRESSED OR IM-PLIED, IN FACT OR BY LAW, INCLUDING ANY WARRANTY AS TO MERCHANTABILITY OR FIT-NESS FOR A PARTICULAR USE OR PURPOSE.

The sole and only remedy in regard to any defective Power Wheel shall be the repair or replacement thereof herein provided, and seller shall not be liable for any consequential, special, incidental, or punitive damages, losses or expenses resulting from or caused by any defects.

AUBURN GEAR, INC. AUBURN, INDIANA, U.S.A. **Auburn Gea**

AuburnGear

400 East Auburn Drive Auburn, Indiana 46706-3499 • USA PH: (219) 925-3200 FAX: (219) 925-4725 E-mail: auburngear@mail.fwi.com Web: http://www.auburngear.com

